The Case about Weight.

Why and How to Include
Minimum Weight as One of the Key
Parameters in Formula Student Car
Concept and Design

Performance Optimization

Lap Time Vs. Power

Engine power in Formula SAE/Student

Do you need 90 HP do be competitive in Formula Student?

Performance Optimization

Mass Sweep

What is our weight reduction limit?
What if your weight limit was your imagination?

Mass and Energy....

A - B 4000 miles

A - C 6000 miles

Problem

Need more fuel

Cannot take off

Need more fuel

Need more fuel

Solution

Bigger Fuel Tank

Bigger Engine

Bigger Fuel Tank

F = M * A Action = Reaction

Mass 200 Kg Lateral Acceleration = 1.5 G

F = M * A= 200 * 1.5 * 9.81 \approx 3000 N

Mass 300 Kg Lateral Acceleration = 1.5 G

F = M * A= 3000 * 1.5 * 9.81 \approx 4500 N

Same Lateral Acceleration More Mass = More Force

Mass 200 Kg Lateral Acceleration = 1.5 G F = M * A= 200 * 1.5 * 9.81 \approx 3000 N

Mass 300 Kg Lateral Acceleration = 1.5 G F = M * A= 3000 * 1.5 * 9.81 \approx 4500 N

More Compliance? Two solutions

- = Add more Force
- = Add more Material

The ugly crescendo keeps going on....

Thinking Smart instead of Thinking Hard

The Tire Load Path Ends at Each Chassis Suspension Pick Up Points

How to avoid compliances (just a few examples)

The suspension link axis must go through one node of the chassis

Yes

No

Use double and not single shear suspension attachment

Yes

No

A Formula Student Electric Example

FSG E 2011

Team A Team B

80 Kw 82 Kw

4 WD 4 WD

No Wing No Wing

145 Kg 230 Kg

Same Concept but Why is Car B Heavier?

Wait Weight!

Car B Heavier..... Because it is Heavier!

More Weight... More Battery... More Weight

The lighter the car is... the lighter it can be

The heavier a car is... the heavier it will have to be

The goal is not to reduce last year car by x kg

The goal is to start from a blank sheet of paper from 0 Kg and to increase the weight to the minimum

Form Follows Function

Heavy and Light Car Components

Car B (230 kg)

Car A (145 Kg)

Lower wishbone rod ends $\emptyset = 8 \text{ mm}$		Lower wishbone rod ends \emptyset = inboard		5 mm
			outboard	6 mm
Top wishbone rod ends	Ø = 8 mm	Top wishbone rod ends	\emptyset = inboard	4 mm
			outboard	5 mm
Toe link rod ends	Ø = 8mm	Toe link rod ends	Ø =	3 mm

It is not all about Formula Student

1976 Golf 1 ——— 2013 Golf 7 810 Kg ——— 1520 Kg

How? What consequences?

It is not all about Formula Student

Weight reduction in the Audi A3

It is not all about Formula Student

A380-800 SANDWICH AND COMPOSITE APPLICATIONS

Which one do you prefer?

Which one do you prefer?

It is possible to make a car

- Simple
- Light
- Stiff
- Esthetic
- Cheap to manufacture
- Easy to maintain

Claude Rouelle Founder and President

vehicle dynamics solutions

6450 South Quebec Street Unit 5-28 Centennial CO 80111 +1 303 752 1562 www.optimumg.com

engineering@optimumg.com

